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Outline

• What we know about ? ’s
– The role of non-accelerator experiments

• What we want to know
– A prioritized list

• The proposed experiments
– The role of non-accelerator experiments

• The need for a US underground lab
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The Mixing Matrix
and the origin of our current understanding
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How do know what we know?

No data yetPhases

Solar ? Experiments~7x10-5 eV2

Some indication from LSNDMaybe Yes / 
Maybe No

Sterile ?

Atmospheric ? Expts.~2x10-5 eV2

? decay, cosmology, Atmos. ?For at least one ?
0.05 eV < m < 2.2 eV

absolute mass 
scale

Reactor ? Experiments<9o?13

Atmospheric ? Expts.~45o?23

Solar ? Experiments~33o?12

?m21
2

?m31
2
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A Prioritized List
My priorities anyway.

1. Absolute mass scale
2. Dirac vs. Majorana
3. ?13

4. Precision measurements, 
Parameters are uncertain
? 12, ?23, ?m2

5. CP violation
6. Steriles and CPT 

violation

?? ? ? , ? , cosmology
?? ? ?
3. Reactor, long baseline
4. Solar, Atmospheric, 

Reactor, long baseline
5. Very long baseline
6. Short baseline, solar 

vs. reactor, other cross 
checks

You’ve heard enough already
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Absolute Mass Scale
A List of Upcoming Techniques

• Supernovas - relatively poor sensitivity
• Cosmology - reach below 100 meV, but model 

dependent
• Nuclear/Particle Physics
• ? decay - relatively poor sensitivity
• ? decay - relatively poor sensitivity
• ? decay - hope to reach below 500 meV
• ? ? decay - hope to reach below 50 meV
• oscillations - sensitivity to mass differences
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Supernova Tests

• Spread of neutrino 
arrival times can give 
indication of mass.

• SN1987a: about 20 eV 
limit but conclusions 
varied.

• Frequency of SN a 
concern.

• SN dynamics makes for 
model dependencies.

• Future sensitivity might 
be a few eV.
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But Earth effects might be exploited 
for ? 13 and sgn(?m2) measurments
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Supernova ? Experiments

Proposed15,000Europe30ScintillatorLENA

Proposed>100,000Japan1000H2O CerenkovHyper-K

Proposed>100,000USA600H2O CerenkovUNO

Proposed6000USA70Liquid ArLANNDD

Proposed2000USA4, 1Pb, FeOMNIS

Soon250Italy2.4Liquid ArIcarus

RunningN/ASouth PoleMeff ~ 0.4/PMTIceAMANDA

Running200USA0.7ScintillatorMINIBooNE

Running50Russia0.33ScintillatorBaksan

Soon?100Italy0.3ScintillatorBorexino

Running300Japan1ScintillatorKamLAND

Running200Italy1ScintillatorLVD

Running350, 450Canada1.4 H2O / 1 D2OHeavy Water 
(salt)

SNO

Running7000Japan32H2O CerenkovSuper-K

status# events at 10 kpcLocationMass (kton)TypeDetector
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Cosmology
Measure ? ?h2

•WMAP measured cosmological 
parameters very precisely. This 
allowed precise estimates of ? ? h2

from LSS measurements.
•WMAP results indicate ? mi < 
about 1 eV. A very competitive 
result. (one interpretation claims 
? mi = 0.64 eV!) 
•But, correlations between 
parameters result in assumption 
dependent conclusions. 
•Want laboratory experiments.
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Cosmology - Future Measurements

• MAP/PLANCK CMB measurements with high 
precision galaxy surveys (Sloan Digital Sky 
Survey): ? mi < ~300 meV

• If weak lensing by LSS is also considered: 
? mi < ~40 meV

• Even with the correlations, cosmology will play 
an important role in the interpretation of 
neutrino mass.
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The Neutrino Mass from ? decay

The shape of the ? energy spectrum 
near the endpoint depends on m? .

m? ? Uei
2 mi

2

i? 1

3
? ? 2.2 eV

NP B (Proc. Suppl.) 91 (2001), 273
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? decay Experiments

1. KATRIN
Very big spectrometer using gaseous 

and thin sources. A big step forward.

2. Univ. of Texas-Austin
t2 source in magnetic free 
environment.

3. Re ? -decay experiments don’t yet have competitive sensitivity.
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The MAC-E Filter

•Magnetic Adiabatic 
Collimation followed 
by an Electrostatic 
Filter

•High luminosity
•Low background
•Good energy resolution

•Integrating 
high-pass filter

?E
E

?
Bmin

Bmax

KATRIN LOI
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KATRIN (LOI version)

KATRIN will be sensitive to about 350 meV. Thus if 
the mi follow a degenerate pattern and m1 is within the 
sensitivity, the experiment may see <m?> = m1.
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Dirac vs. Majorana 
? ? (0? ): requires massive Majorana ?

n ? p ? e? ? ? e

? e ? n ? p ? e ?
(RH ? e ) (LH ?e )

e-

e-

Z+2

Z+1

Z ? e
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?? Decay Rates

? 2 ? ? G2? M2?
2

G are calculable phase space factors.
G0? ~ Q5

|M| are nuclear physics matrix elements.
Hard to calculate.

m? is where the interesting physics lies.

? 0? ? G0? M0?
2 m??

2
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Min. <m? ? > as a vector sum

m? ? ? Ue1
2 m1 ? e i? Ue 2

2 m2 ? e i? Ue3
2 m3

<m? ?> is the modulus 
of the resultant vector 
in the complex plane. 

(In this example, 
<m? ?> has a min.  It 

cannot be 0.)
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min

Figure from: PR D63, 073005
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Effective Majorana ? ? Mass
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Summary of Physics Reach
Even null results will have implications!

M/2 or M28 or 55 meV<m? ? > ~ 5 meV

M~0 meVm3 ~ 55 meV

M~55 meVm2 ~ 7 meV

= M > about 100
meV

~55 meVm1 ~ 0 meV

DegenerateInverted HierarchyNormal Hierarchy

m?? ? 0.5? ?2 m1 ? ?21 0.866? ?2 m1
2 ? ?m21

2

Solar + KamLAND + Atmospheric (Ue3~ 0)
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Next generation 0 ??? ? -decay experiments

Next Generation Double Beta Decay Experiments
Isotope Experiment Technique Isotope

Mass (t)
Enriched Q? ?

(MeV)
Expected

Sensitivity
T1/2

0?

48Ca CANDLES CaF2 cry stals in liq. scint. ~1-3 No 4.27 1 x 1026

76Ge GEM Ge diodes in LN 1 Yes 2.04 7 x 1027

76Ge GENIUS Ge diodes in LN 1 86% 2.04 1 x 1028

76Ge MAJORANA Segmented Ge crys tals .5 86% 2.04 3 x 1027

82Se, 100Mo,
116Cd, 150Nd

NEMO3 drift chamber-scintillator .001, .007 ,
 .001, .001

Yes 3.0,3.0,
2.8,3.4

4 x 1024

100Mo MOON Scint+Fo ils (or Bolometer) 34 No 3.03 1 x 1027

116Cd CAMEO CdWO4 - Bo rexino CTF ~1 Yes 2.8 > 1027

116Cd CWO CdWO4 ~1 Yes 2.8 1 x 1026

130Te COBRA CdZnTe or TeO2 semi conductors .01 No 2.6 1 x 1024

130Te CUORICINO Cryogenic TeO2 crystals .04 No 2.6 1 x 1024

130Te CUORE Cryogenic TeO2 crys tals .75 No 2.6 2 x 1026

136Xe EXO Liquid Xe 1-10 Yes 2.47 8 x 1026

136Xe Xe Xe in liquid scintillator 1.6 Yes 2.47 5 x 1026

136Xe XMASS liquid Xe  (solar ?) 10 No 2.47 3 x 1026

150Nd DCBA-II(2) foils and tracking chambers .02 Yes 3.37 2 x 1025

160 Gd GSO Gd2SiO5 :Ce crystal scint. in liq. scint. 2 No 1.73 2 x 1026

EXO

Majorana
CUORE

MOON
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Precision Measurements: ? 12
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• Copious supply of well 
characterized ? .
– The pp flux is 

theoretically well known 
(~1%)

– The spectral shapes of the 
other ? s are well known.

• Low energy
• Very far away

This is a great source for 
the study of ?

characteristics.
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Cross Checks from Solar ? s for LMA

• Day-Night asymmetry: ASNO ~4%, ASK ~2%
• Spectrum distortion:5-10% upturn expected 

between 5 and 8 MeV
• Suppression of intermediate energies (i.e. 7Be)
• Seasonal variation is very small
• Suppression of low energies (i.e. pp)

– Next generation of pp experiments
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Why do a pp measurement?

1. Precise measurement of 
vacuum mixing angle, and 
improved value for sterile ?
component

2. Potential new phenomena 
at low energies.

3. Flux measurements 
compared to solar models 
will be strong tests of 
astrophysics.
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What about a future pp measurement?
From Bahcall and Pena-Garay

• Assuming that the 7Be is 
measured to 5%

• Assuming 3 years of
KamLAND running

• A pp flux measurement to 
better than 3% will make a 
significant improvement on 
? 12.

• A 1% pp measurement 
would only make a modest 
improvement on the ? 13
bound.
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Precision Measurements of ? 23
and ?m2

23

• Atmospheric ? experiments have 
provided ? 23 and ?m2

23. 
• Future precision measurements of these 

parameters will most likely come from 
long baseline studies. K2K, MINOS, 
CGS, etc.
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SNO (Total Flux Unknown): ? e? ? x Disappearance
? e? ?? ? Appearance
— —

KamLAND (Total Flux Known): ? e? ? x Disappearance
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4 By comparing solar experiments
with reactor experiments, one can 
constrain the sterile flux of neutrinos 
from the Sun.

sin2? is fraction of sterile admixture.
A 1% measurement of the pp flux 
would improve the bound on this 
parameter.

Sterile Neutrinos?
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Sterile Neutrinos and the upturn.

•The LMA solution predicts a 5-10% upturn at 5-8 MeV.
SNO and SK don’t see this (could be statistics).

•And… the Cl experiment sees a modest suppression 
(~2? ) from the LMA expectation.
•Both results could be explained by a weak mixing 
between ?1 and ? s

A further suppression between 0.8 and 5 MeV would also 
arise due to this mixing. Future experiments sensitive to 
7Be ? could test this.

hep-ph/0306075
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Tests of CPT

? e????

he
p -

ph
/0

21
21

16

Solar expts., KamLAND, MINIBooNE, short baseline expts, 
MINOS(as atm. ? detector), SuperK atmos,
K2K LBL all play roles in the required 3? +3 anti-? analysis.

hep-ph/0306226 
claims this scheme 
doesn’t fit the data.
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Underground Research has 
Produced Numerous Dramatic Results.
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What future underground science 

lies ahead?

• Atmospheric ? s

• Dark Matter
• Double ? Decay
• Nucleon Decay
• Solar Neutrinos
• Supernova ? s
• Very Long Baseline ?

Oscillation Expts.

Many of the experiments 
proposed for these fields have 
strong synergies.

In many cases, a detector 
designed to observe ? from an 
accelerator source also 
performs a “non-accelerator” 
style measurement.
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Why a New Lab and Why in

North America?
• The science is compelling.
• There is a lack of deep sites for next generation expts.

Background requirements have typically increased by a factor of 
100-1000 since Gran Sasso and Kamioka were built 20 years ago.
– dark matter: ~4500 mwe
– double beta decay: 2400 - 6000 mwe
– solar neutrinos: ~6000 mwe

• There is a lack of space in existing laboratories
• The lack of a US laboratory has inhibited the development 

of underground science within the US.
• NUSEL will encourage synergies that will advance 

science.
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Nuclear Physics The World’s Underground Labs
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Existing North 
American UG 

Labs

Sudbury
(6010 mwe)

Soudan
(2100 mwe)

WIPP
(1700 mwe)
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WIPP

• DOE Facility
• Impressive

infrastructure
• Modest depth

(1600 mwe)
• Science as

add-on to
primary mission

• Low background
counting lab
being developed
LANL-PNNL
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Experimental Operations

EXO ? ? Project

OMNISita supernova
Experiment

Majorana ? ?
R&D Lab



July 24, 2003 HEPAP meeting, Steve Elliott 38

Nuclear Physics

Soudan
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Nuclear Physics Sudbury Neutrino Observatory

Existing SNO Cavity

New Hall (2005)• INCO (commercial) Ni mine
• Restricted shaft size
• Deep (6010 mwe)
• Planned expansion can 

incorporate 2 modest-sized 
experiments
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Conclusions
• Much of what we know about neutrinos comes 

from non-accelerator physics. In particular, 
underground experiments have been crucial.

• Our next goals for learning about neutrino 
characteristics will also see a large role for non-
accelerator experiments. And again UG science 
will play a large role.

• A National UG Laboratory would not only 
provide infrastructure for such experiments, 
but also a focal point to define a program in 
UG science.


